แคลคูลัส(Calculus)
1. ลิมิตของฟังก์ชัน เขียนแทนด้วย lim f(x) = L
หมายถึง x มีค่าเข้าใกล้ a (x a) แล้ว f(x) จะมีค่าเข้าใกล้ L
วิธีหา ค่าลิมิตของฟังก์ชัน
(1). เอาค่า a ไปแทนใน x ใน f(x) ถ้าผลที่ได้เป็นจำนวนจริงค่านั้นคือ ค่าลิมิต
(2). เอาค่า a ไปแทนใน x ใน f(x)แล้วปรากฏผลออกมาในรูป
ให้พิจารณาลักษณะของฟังก์ชัน ดังนี้
(2.1) ถ้าสามารถแยก f(x) ออกเป็นผลคูณของตัวประกอบได้ ก็ให้แยกแล้วขจัดตัวประกอบร่วมของเศษและส่วนออก หลังจากนั้นก็เอาค่า a ไปแทน x ถ้าผลที่ได้เป็นจำนวนจริง ค่านั้นคือค่าลิมิต
(2.2) ถ้าแยกตัวประกอบไม่ได้ เนื่องจาก f(x) มักอยู่ในรูป
ก็ให้นำคอนจูเกตคูณทั้งเศษและส่วน แล้วขจัดตัวประกอบที่ทำให้ส่วนเป็นศูนย์ออก หลังจากนั้นก็เอาค่า a ไปแทน x ถ้าผลที่ได้เป็นจำนวนจริง ค่านั้นคือค่าลิมิต
2. ความต่อเนื่องของฟังก์ชัน ในทางคณิตศาสตร์ตรวจสอบว่า f จะต่อเนื่องที่
x = a หรือไม่นั้น ต้องตรวจสอบจากคุณสมบัติ 3 ข้อต่อไปนี้
1. หา f(a) ได้
2. lim f(x) หาค่าได้
3. lim f(x) = f(a)
3. อัตราการเปลี่ยนแปลงโดยเฉลี่ย ของ y หรือ f(x) ในช่วง x1 ถึง x1+h คือ
f(x1-h) - f(x1)
h
4. อัตราการเปลี่ยนแปลง ของ y = f(x) ณ x = x1
lim f(x+h) - f(x) คือ อัตราการเปลี่ยนแปลง ของ y = f(x) ณ x ใด ๆ
h
5. อนุพันธ์ของฟังก์ชัน f แทนด้วย f /(x) หรือ dy/dx
ถ้า y = f(x) เป็นฟังก์ชันที่มีโดเมนและเรนจ์เป็นสับเซตของเซตจำนวนจริงเราเรียก lim f(x+h) - f(x) ที่หาได้ว่า อนุพันธ์ของฟังก์ชัน f ที่ x
h
6. สูตรในการหาอนุพันธ์ของฟังก์ชัน
สูตรที่ 1. ถ้า y = f(x) = c เป็นค่าคงที่ dy/dx = f/(x) = 0
สูตรที่ 2. ถ้า y = f(x) = x dy/dx = f/(x) = 1
สูตรที่ 3. ถ้า y = f(x) = xn เมื่อ n เป็นจำนวนจริง dy/dx = f/(x) =nxn-1
สูตรที่ 4. ถ้า y = f(x) = g(x) + h(x) dy/dx = g/ (x) + h/ (x)
สูตรที่ 5. ถ้า y = f(x) = g(x) - h(x) dy/dx = g/ (x) - h/ (x)
สูตรที่ 6. ถ้า y = f(x) = cg(x) dy/dx = cg/ (x)
สูตรที่ 7. ถ้า y = f(x) = g(x) h(x) dy/dx = g/(x)h(x)+h/ (x)g(x)
สูตรที่ 8. ถ้า y = f(x) = g(x) เมื่อ h(x) 0
h(x)
dy/dx = g/(x)h(x) - h/(x)g(x)
h(x) 2
สูตรที่ 9. ถ้า y = f(x) = un เมื่อ u เป็นฟังก์ชันของ x และ n เป็นจำนวนจริงจะได้ว่า dy/dx = nun-1 du/dx
ตัวอย่าง ถ้า f(x) = (x2 + 3x + 5)8 จงหาค่าของ dy/dx
วิธีทำ dy/dx = 8(x2 + 3x + 5)7 d (x2 + 3x + 5)
dx
= 8(x2 + 3x + 5)7(2x+3)
7. วิธีหาค่าจุดสูงสุดสัมพัทธ์หรือจุดต่ำสุดสัมพัทธ์
7.1 หา dy/dx = f/(x)
7.2 ให้ dy/dx = f/(x) = 0
7.3 แก้สมการหาค่าตัวแปร x ที่จะทำให้ f(x) มีค่าสูงสุดสัมพัทธ์หรือจุดต่ำสุดสัมพัทธ์ หรือไม่เกิดค่า 2 อย่างดังกล่าวก็ได้ เราเรียกค่า x นี้ว่า ค่าวิกฤต
7.4 นำค่า x ดังกล่าวนี้มาตรวจสอบว่าทำให้ f(x) มีค่าสูงสุด หรือต่ำสุดสัมพัทธ์ หรือไม่เป็นทั้งสองอย่าง ซึ่งมีวิธีการตรวจสอบได้ 2 วิธีดังนี้
(1) ตรวจสอบดูจากเครื่องหมายความชัน
ก. ถ้าความชัน f/(x) เปลี่ยนจากบวกเป็นลบ แสดงว่าจุดดังกล่าวเป็นจุดสูงสุดสัมพัทธ์
ข. ถ้าความชัน f/(x) เปลี่ยนจากลบเป็นบวก แสดงว่าจุดดังกล่าวเป็นจุดต่ำสุดสัมพัทธ์
ค. ถ้าไม่เป็นไปตามข้อ ก หรือ ข แสดงว่าจุดดังกล่าวไม่เป็นทั้งจุดสูงสุดและต่ำสุดสัมพัทธ์
(2) ตรวจสอบดูจากเครื่องหมายของ f//(x)
ก. ถ้า f//(x) > 0 แสดงว่าเป็นจุดต่ำสุดสัมพัทธ์
ข. ถ้า f//(x) < 0 แสดงว่าเป็นจุดสูงสุดสัมพัทธ์
ค. ถ้า f//(x) = 0 แสดงว่าการตรวจสอบวิธีนี้ใช้ไม่ได้ ต้องย้อนกลับไปใช้วิธี(1)
8. อินทิกรัลไม่จำกัดเขต เรียกเครื่องหมาย ว่า เครื่องหมายอิทิกรัล
สูตร 1. เมื่อ k และ c เป็นค่าคงตัว
สูตร 2. เมื่อ n -1 และ c เป็นค่าคงตัว
สูตร 3. เมื่อ k เป็นค่าคงตัว
ไม่มีความคิดเห็น:
แสดงความคิดเห็น